8 research outputs found

    Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine.

    Get PDF
    AbstractAdvances in nanomedicine, coupled with novel methods of creating advanced materials at the nanoscale, have opened new perspectives for the development of healthcare and medical products. Special attention must be paid toward safe design approaches for nanomaterial‐based products. Recently, artificial intelligence (AI) and machine learning (ML) gifted the computational tool for enhancing and improving the simulation and modeling process for nanotoxicology and nanotherapeutics. In particular, the correlation of in vitro generated pharmacokinetics and pharmacodynamics to in vivo application scenarios is an important step toward the development of safe nanomedicinal products. This review portrays how in vitro and in vivo datasets are used in in silico models to unlock and empower nanomedicine. Physiologically based pharmacokinetic (PBPK) modeling and absorption, distribution, metabolism, and excretion (ADME)‐based in silico methods along with dosimetry models as a focus area for nanomedicine are mainly described. The computational OMICS, colloidal particle determination, and algorithms to establish dosimetry for inhalation toxicology, and quantitative structure–activity relationships at nanoscale (nano‐QSAR) are revisited. The challenges and opportunities facing the blind spots in nanotoxicology in this computationally dominated era are highlighted as the future to accelerate nanomedicine clinical translation

    Nanobiomaterials for vascular biology and wound management: a review

    Get PDF
    Nanobiomaterials application into tissue repair and ulcer management is experiencing its golden age due to spurring diversity of translational opportunity to clinics. Over the past years, research in clinical science has seen a dramatic increase in medicinal materials at nanoscale those significantly contributed to tissue repair. This chapter outlines the new biomaterials at nanoscale those contribute state of the art clinical practices in ulcer management and wound healing due to their superior properties over traditional dressing materials. Designing new recipes for nanobiomaterials for tissue engineering practices spanning from micro to nano-dimension provided an edge over traditional wound care materials those mimic tissue in vivo. Clinical science stepped into design of artificial skin and extracellular matrix (ECM) components emulating the innate structures with higher degree of precision. Advances in materials sciences polymer chemistry have yielded an entire class of new nanobiomaterials ranging from dendrimer to novel electrospun polymer with biodegradable chemistries and controlled molecular compositions assisting wound healing adhesives, bandages and controlled of therapeutics in specialized wound care. Moreover, supportive regenerative medicine is transforming into rational, real and successful component of modern clinics providing viable cell therapy of tissue remodeling. Soft nanotechnology involving hydrogel scaffold revolutionized the wound management supplementing physicobiochemical and mechanical considerations of tissue regeneration. Moreover, this chapter also reviews the current challenges and opportunities in specialized nanobiomaterials formulations those are desirable for optimal localized wound care considering their in situ physiological microenvironment

    Traditional Herbal Remedies with a Multifunctional Therapeutic Approach as an Implication in COVID-19 Associated Co-Infections

    No full text
    Co-infection in patients with viral infection as a predisposing factor is less focused on during epidemic outbreaks, resulting in increased morbidity and mortality. Recent studies showed that patients with coronavirus disease 2019 (COVID-19) often have both bacterial and fungal co-infections. In this study, sputum samples of 120 OPD (outdoor patients) suffering from respiratory tract infection (RTI) but negative for tuberculosis infection were collected with informed consent. Morphological, biochemical, and resistance criteria were used to classify isolates and to distinguish multidrug resistant (MDR) isolates, which were further classified on a molecular basis. We found that the isolates, including MDR strains, showed remarkable sensitivity against acetone and methanol extracts of Moringa oleifera, Adhatoda vasica, and Cassia fistula. The results strongly confirmed that multifactorial infections can produce MDR characteristics against antimicrobial drugs, which gave insight into the use of herbal drugs with their age-old traditional importance as having antiviral, antibacterial, antifungal, anti-inflammatory, and immunomodulatory effects. We conclude that apart from this, the anti-infective potential of these plants can be used in the future in the form of products such as cosmetics, pharmaceutical coatings, surface coatings, drug delivery vehicle coatings, and other bioengineered coatings for public use. Future studies are required to assess therapeutics for co-infective resistant strains and nosocomial infections with immune-enhancing effects, thereby promoting their function in holistic treatment and therapy of COVID-19 patients

    Validating Anti-Infective Activity of Pleurotus Opuntiae via Standardization of Its Bioactive Mycoconstituents through Multimodal Biochemical Approach

    No full text
    Mushrooms produce a variety of bioactive compounds that are known to have anti-pathogenic properties with safer and effective therapeutic effects in human disease prognosis. The antibacterial activity of ethanol and methanol extracts of Pleurotus opuntiae were checked against pathogenic microorganisms viz. Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis NCIM 2300, Proteus vulgaris NCIM 5266, Serratia marcescens NCIM 2078, Shigella flexeneri NCIM 5265, Moraxella sp. NCIM 2795, Staphylococcus aureus ATCC 25923 by agar well diffusion method at different concentrations of the extracts. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extracts was determined by INT (Iodonitrotetrazolium chloride) colorimetric assay. Extracts were standardized by thin layer chromatography (TLC) in different solvent systems. The Retention factors (Rf) of different compounds were calculated by high performance TLC (HPTLC) fingerprinting at UV 254, 366, and 540 nm before and after derivatization. The ethanol and methanol extracts of P. opuntiae showed bactericidal activity against all the test pathogens at MIC values of 15.6 to 52.08 mg/mL and 20.81 to 52.08 mg/mL respectively. Whereas the MBC values for ethanol and methanol extract of P. opuntiae against all pathogens were recorded as 26.03 to 62.5 mg/mL and 125 mg/mL respectively. Preliminary mycochemical screening of both the extracts revealed high contents of bioactive compounds. Amongst all the solvent systems used in TLC, the best result was given by chloroform + hexane (8:2) which eluted out 5 different compounds (spots). HPTLC results revealed spots with different Rf values for all the 24 compounds present. Thus, it can be inferred from the present investigation that the mycoconstituents could be an alternative medication regimen and could play a role in new drug discoveries against different infections. Further, the antimicrobial components of these mushrooms can be transformed to bioengineered antimicrobial coatings for surfaces, drug and other hybrid systems for public health implications in combating persistent infections

    Herbal concoction Unveiled: A computational analysis of phytochemicals' pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs)

    No full text
    Herbal medications have an extensive history of use in treating various diseases, attributed to their perceived efficacy and safety. Traditional medicine practitioners and contemporary healthcare providers have shown particular interest in herbal syrups, especially for respiratory illnesses associated with the SARS-CoV-2 virus. However, the current understanding of the pharmacokinetic and toxicological properties of phytochemicals in these herbal mixtures is limited. This study presents a comprehensive computational analysis utilizing novel approach methodologies (NAMs) to investigate the pharmacokinetic and toxicological profiles of phytochemicals in herbal syrup, leveraging in-silico techniques and prediction tools such as PubChem, SwissADME, and Molsoft's database. Although molecular dynamics, docking, and broader system-wide analyses were not considered, future studies hold potential for further investigation in these areas. By combining drug-likeness with molecular simulation, researchers identify diverse phytochemicals suitable for complex medication development examining their pharmacokinetic-toxicological profiles in phytopharmaceutical syrup. The study focuses on herbal solutions for respiratory infections, with the goal of adding to the pool of all-natural treatments for such ailments. This research has the potential to revolutionize environmental and alternative medicine by leveraging in-silico models and innovative analytical techniques to identify novel phytochemicals with enhanced therapeutic benefits and explore network-based and systems biology approaches for a deeper understanding of their interactions with biological systems. Overall, our study offers valuable insights into the computational analysis of the pharmacokinetic and toxicological profiles of herbal concoction. This paves the way for advancements in environmental and alternative medicine. However, we acknowledge the need for future studies to address the aforementioned topics that were not adequately covered in this research
    corecore